If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-9x-1=0
a = 18; b = -9; c = -1;
Δ = b2-4ac
Δ = -92-4·18·(-1)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{17}}{2*18}=\frac{9-3\sqrt{17}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{17}}{2*18}=\frac{9+3\sqrt{17}}{36} $
| 2(3x-5+1=6x-8 | | 7 | | D/6=12d= | | 1=z/3-6 | | -4+6x=-2x+60 | | 3(6p-2)=30 | | 140=14p | | -3-n=5.8 | | m4+6=2 | | -x+9-12x=160 | | w/2-9=1 | | 8-n=-8-3n | | 6w-2=-18 | | 2j+4-4j+6=26 | | 5.8=n−(–3) | | 5.8=n−–3 | | a-14=10 | | a-20=-27 | | 10-2(3y-5)=26 | | -2n=-18n | | -(3x-14)+9x=6x+42 | | 10x+5/5=17 | | p+54–6=0 | | 32^(2t)=8 | | 6n+9+2n+5=n | | 3m=36-6m3m=36−6m. | | 4=4(d-93) | | –8z=–24 | | 9f=8f-4 | | u/6+69=77 | | 56=7(w+6) | | -1/2(2n+4)=-9+4(2n+1) |